31 research outputs found

    SteinerNet: a web server for integrating ‘omic’ data to discover hidden components of response pathways

    Get PDF
    High-throughput technologies including transcriptional profiling, proteomics and reverse genetics screens provide detailed molecular descriptions of cellular responses to perturbations. However, it is difficult to integrate these diverse data to reconstruct biologically meaningful signaling networks. Previously, we have established a framework for integrating transcriptional, proteomic and interactome data by searching for the solution to the prize-collecting Steiner tree problem. Here, we present a web server, SteinerNet, to make this method available in a user-friendly format for a broad range of users with data from any species. At a minimum, a user only needs to provide a set of experimentally detected proteins and/or genes and the server will search for connections among these data from the provided interactomes for yeast, human, mouse, Drosophila melanogaster and Caenorhabditis elegans. More advanced users can upload their own interactome data as well. The server provides interactive visualization of the resulting optimal network and downloadable files detailing the analysis and results. We believe that SteinerNet will be useful for researchers who would like to integrate their high-throughput data for a specific condition or cellular response and to find biologically meaningful pathways. SteinerNet is accessible at http://fraenkel.mit.edu/steinernet.National Institutes of Health (U.S.) (U54-CA112967)National Institutes of Health (U.S.) (R01-GM089903)National Science Foundation (Award Number DB1-0821391)National Institutes of Health (U.S.) (U54-CA112967

    Reconstruction of the temporal signaling network in Salmonella-infected human cells

    Get PDF
    Salmonella enterica is a bacterial pathogen that usually infects its host through food sources. Translocation of the pathogen proteins into the host cells leads to changes in the signaling mechanism either by activating or inhibiting the host proteins. Using high-throughput ‘omic’ technologies, changes in the signaling components can be quantified at different levels; however, experimental hits are usually incomplete to represent the whole signaling system as some driver proteins stay hidden within the experimental data. Given that the bacterial infection modifies the response network of the host, more coherent view of the underlying biological processes and the signaling networks can be obtained by using a network modeling approach based on the reverse engineering principles in which a confident region from the protein interactome is found by inferring hits from the omic experiments. In this work, we have used a published temporal phosphoproteomic dataset of Salmonella-infected human cells and reconstructed the temporal signaling network of the human host by integrating the interactome and the phosphoproteomic datasets. We have combined two well-established network modeling frameworks, the Prize-collecting Steiner Forest (PCSF) approach and the Integer Linear Programming (ILP) based edge inference approach. The resulting network conserves the information on temporality, direction of interactions, while revealing hidden entities in the signaling, such as the SNARE binding, mTOR signaling, immune response, cytoskeleton organization, and apoptosis pathways. Targets of the Salmonella effectors in the host cells such as CDC42, RHOA, 14-3-3ή, Syntaxin family, Oxysterol-binding proteins were included in the reconstructed signaling network although they were not present in the initial phosphoproteomic data. We believe that integrated approaches have a high potential for the identification of clinical targets in infectious diseases, especially in the Salmonella infections

    Network-Based Interpretation of Diverse High-Throughput Datasets through the Omics Integrator Software Package

    Get PDF
    High-throughput, ‘omic’ methods provide sensitive measures of biological responses to perturbations. However, inherent biases in high-throughput assays make it difficult to interpret experiments in which more than one type of data is collected. In this work, we introduce Omics Integrator, a software package that takes a variety of ‘omic’ data as input and identifies putative underlying molecular pathways. The approach applies advanced network optimization algorithms to a network of thousands of molecular interactions to find high-confidence, interpretable subnetworks that best explain the data. These subnetworks connect changes observed in gene expression, protein abundance or other global assays to proteins that may not have been measured in the screens due to inherent bias or noise in measurement. This approach reveals unannotated molecular pathways that would not be detectable by searching pathway databases. Omics Integrator also provides an elegant framework to incorporate not only positive data, but also negative evidence. Incorporating negative evidence allows Omics Integrator to avoid unexpressed genes and avoid being biased toward highly-studied hub proteins, except when they are strongly implicated by the data. The software is comprised of two individual tools, Garnet and Forest, that can be run together or independently to allow a user to perform advanced integration of multiple types of high-throughput data as well as create condition-specific subnetworks of protein interactions that best connect the observed changes in various datasets. It is available at http://fraenkel.mit.edu/omicsintegrator and on GitHub at https://github.com/fraenkel-lab/OmicsIntegrator.National Institutes of Health (U.S.) (grant U54CA112967)National Institutes of Health (U.S.) (grant U01CA184898)National Institutes of Health (U.S.) (grant U54NS091046)National Institutes of Health (U.S.) (grant R01GM089903

    Ischemic Heart Disease Selectively Modifies the Right Atrial Appendage Transcriptome

    Get PDF
    Background: Although many pathological changes have been associated with ischemic heart disease (IHD), molecular-level alterations specific to the ischemic myocardium and their potential to reflect disease severity or therapeutic outcome remain unclear. Currently, diagnosis occurs relatively late and evaluating disease severity is largely based on clinical symptoms, various imaging modalities, or the determination of risk factors. This study aims to identify IHD-associated signature RNAs from the atrial myocardium and evaluate their ability to reflect disease severity or cardiac surgery outcomes.Methods and Results: We collected right atrial appendage (RAA) biopsies from 40 patients with invasive coronary angiography (ICA)-positive IHD undergoing coronary artery bypass surgery and from 8 patients ICA-negative for IHD (non-IHD) undergoing valvular surgery. Following RNA sequencing, RAA transcriptomes were analyzed against 429 donors from the GTEx project without cardiac disease. The IHD transcriptome was characterized by repressed RNA expression in pathways for cell-cell contacts and mitochondrial dysfunction. Increased expressions of the CSRNP3, FUT10, SHD, NAV2-AS4, and hsa-mir-181 genes resulted in significance with the complexity of coronary artery obstructions or correlated with a functional cardiac benefit from bypass surgery.Conclusions: Our results provide an atrial myocardium-focused insight into IHD signature RNAs. The specific gene expression changes characterized here, pave the way for future disease mechanism-based identification of biomarkers for early detection and treatment of IHD.Peer reviewe

    Genome-Scale Networks Link Neurodegenerative Disease Genes to α-Synuclein through Specific Molecular Pathways

    Get PDF
    Numerous genes and molecular pathways are implicated in neurodegenerative proteinopathies, but their inter-relationships are poorly understood. We systematically mapped molecular pathways underlying the toxicity of alpha-synuclein (α-syn), a protein central to Parkinson's disease. Genome-wide screens in yeast identified 332 genes that impact α-syn toxicity. To “humanize” this molecular network, we developed a computational method, TransposeNet. This integrates a Steiner prize-collecting approach with homology assignment through sequence, structure, and interaction topology. TransposeNet linked α-syn to multiple parkinsonism genes and druggable targets through perturbed protein trafficking and ER quality control as well as mRNA metabolism and translation. A calcium signaling hub linked these processes to perturbed mitochondrial quality control and function, metal ion transport, transcriptional regulation, and signal transduction. Parkinsonism gene interaction profiles spatially opposed in the network (ATP13A2/PARK9 and VPS35/PARK17) were highly distinct, and network relationships for specific genes (LRRK2/PARK8, ATXN2, and EIF4G1/PARK18) were confirmed in patient induced pluripotent stem cell (iPSC)-derived neurons. This cross-species platform connected diverse neurodegenerative genes to proteinopathy through specific mechanisms and may facilitate patient stratification for targeted therapy. Keywords: alpha-synuclein; iPS cell; Parkinson’s disease; stem cell; mRNA translation; RNA-binding protein; LRRK2; VPS35; vesicle trafficking; yeas

    Epitranscriptomics of Ischemic Heart Disease—The IHD-EPITRAN Study Design and Objectives

    Get PDF
    Epitranscriptomic modifications in RNA can dramatically alter the way our genetic code is deciphered. Cells utilize these modifications not only to maintain physiological processes, but also to respond to extracellular cues and various stressors. Most often, adenosine residues in RNA are targeted, and result in modifications including methylation and deamination. Such modified residues as N-6-methyl-adenosine (m6A) and inosine, respectively, have been associated with cardiovascular diseases, and contribute to disease pathologies. The Ischemic Heart Disease Epitranscriptomics and Biomarkers (IHD-EPITRAN) study aims to provide a more comprehensive understanding to their nature and role in cardiovascular pathology. The study hypothesis is that pathological features of IHD are mirrored in the blood epitranscriptome. The IHD-EPITRAN study focuses on m6A and A-to-I modifications of RNA. Patients are recruited from four cohorts: (I) patients with IHD and myocardial infarction undergoing urgent revascularization; (II) patients with stable IHD undergoing coronary artery bypass grafting; (III) controls without coronary obstructions undergoing valve replacement due to aortic stenosis and (IV) controls with healthy coronaries verified by computed tomography. The abundance and distribution of m6A and A-to-I modifications in blood RNA are charted by quantitative and qualitative methods. Selected other modified nucleosides as well as IHD candidate protein and metabolic biomarkers are measured for reference. The results of the IHD-EPITRAN study can be expected to enable identification of epitranscriptomic IHD biomarker candidates and potential drug targets

    Epitranscriptomics of Ischemic Heart Disease - The IHD-EPITRAN Study Design and Objectives

    Get PDF
    Epitranscriptomic modifications in RNA can dramatically alter the way our genetic code is deciphered. Cells utilize these modifications not only to maintain physiological processes, but also to respond to extracellular cues and various stressors. Most often, adenosine residues in RNA are targeted, and result in modifications including methylation and deamination. Such modified residues as N-6-methyl-adenosine (m(6)A) and inosine, respectively, have been associated with cardiovascular diseases, and contribute to disease pathologies. The Ischemic Heart Disease Epitranscriptomics and Biomarkers (IHD-EPITRAN) study aims to provide a more comprehensive understanding to their nature and role in cardiovascular pathology. The study hypothesis is that pathological features of IHD are mirrored in the blood epitranscriptome. The IHD-EPITRAN study focuses on m(6)A and A-to-I modifications of RNA. Patients are recruited from four cohorts: (I) patients with IHD and myocardial infarction undergoing urgent revascularization; (II) patients with stable IHD undergoing coronary artery bypass grafting; (III) controls without coronary obstructions undergoing valve replacement due to aortic stenosis and (IV) controls with healthy coronaries verified by computed tomography. The abundance and distribution of m(6)A and A-to-I modifications in blood RNA are charted by quantitative and qualitative methods. Selected other modified nucleosides as well as IHD candidate protein and metabolic biomarkers are measured for reference. The results of the IHD-EPITRAN study can be expected to enable identification of epitranscriptomic IHD biomarker candidates and potential drug targets.</p
    corecore